Skip to contents

All functions

allprobs()
Matrix of all probabilities
ar_simulation()
Simulation of autoregressive HMMs
autoregressivehmm-package autoregressivehmm
Autoregressive HMMs: To give all this code some structure
boxplot_params()
Boxplot of different simulation runs
boxplot_sim_params()
Full simulation boxplots of estimated parameters
circ_vm_viz()
Circular KDE and density of von Mises distribution
dens_gamma()
Density of gamma distribution
dens_norm()
Density of normal distribution
dens_vm()
Density of von Mises distribution
fit_arp_model()
Fit an autoregressive HMM to data
full_sim_loop()
Simulation loop
logAlpha()
Forward log-probabilities
mllk()
Compute negative (penalized) log-likelihood of an autoregressive HMM
nice_params()
Construct parameter object for autoregressive HMM likelihood evaluation
plot_data()
Plot data
plot_decoded_data()
Plot decoded data
plot_fitted_dist()
Density plot of estimated distributions of autoregressive HMMs
plot_states()
Plot states decoded by Viterbi algorithm
pseudores_arp()
Compute pseudo residuals
sample_arp()
Simulate data from an autoregressive HMM
sample_gamma()
Sample from gamma distribution
sample_norm()
Sample from normal distribution
sample_vm()
Sample from von Mises distribution
simulate_track()
Generate track from simulated data
starize()
Natural parameters to working parameters (theta->theta.star)
starting_params_opt()
Generate starting parameters for a distribution
unstarize()
Working parameters to natural parameters (theta.star->theta)
viterbi_arp()
Global decoding for autoregressive HMM using Viterbi